German Science Foundation (DFG)
Atomic/molecular layer deposition of hybrid inorganic–organic thin films from erbium guanidinate precursor
An efficient PE-ALD process for TiO2 thin films employing a new Ti-precursor
Comparison of electron heating and energy loss mechanisms in an RF plasma jet operated in argon and helium
Modular constructed metal-grid arrays - an alternative to silicon-based microplasma devices for catalytic applications
Fast charge exchange ions in high power impulse magnetron sputtering of titanium as probes for the electrical potential
SFB TR 87

The SFB-TR 87 combines the expertise in the areas of plasma physics / plasma technology, materials science / surface engineering and interfacial chemistry. On this basis, ternary or quaternary ceramic layer systems on metal substrates with outstanding tribological properties as well as silicon- or carbon-containing oxide layers with outstanding barrier properties on plastic substrates are being investigated. For this purpose, the latest, partially self-developed source technology is used and characterized with a very broad, complementary spectrum of quantitative, also partially newly developed plasma diagnostics and one-off single-particle beam experiments. The focus is on pulsed high-power plasmas, such as High Power Pulsed Magnetron Sputtering (HiPIMS) systems, multi-frequency capacitively coupled plasma (MFCCP) systems and pulsed and high-frequency bias-driven microwave (MW) microwave systems, and inductively coupled plasmas (ICP). In order to meet the above vision, the goal is to explore the relationships between material properties and plasma parameters, to quantify them and to use them for plasma control, layer development and in-situ layer control. In this way, the previously prevailing empirical approach is overcome and a physically and chemically based process understanding is developed.
SFB 1316

The Collaborative Research Centre (CRC) 1316 “Transient atmospheric plasmas – from plasmas to liquids to solids” addresses these research questions by combining expertise in plasma physics, surface physics, chemistry, biotechnology, and engineering. This CRC focuses on transient atmospheric plasmas at varying spatial and temporal scales for the nanostructuring and activation of catalytic surfaces, for the coupling to catalysis and biocatalysis, as well as for electrochemical processes.