Primary tabs

Other Access

The information on this page (the dataset metadata) is also available in these formats.

JSON RDF

via the DKAN API

Ion energy distributions from the impact of an atmospheric dielectric barrier discharge plasma jet on surfaces

The ion energy distribution functions (IEDF) have been measured for a helium atmospheric pressure dielectric barrier discharge jet expanding into the air and impacting a metal or ceramic surface. The plasma jet produces ionization waves as guided positive streamers that reach the surface. Molecular beam mass spectrometry (MBMS) with an energy filter has been used to monitor the IEDFs at a distance of 1.5 cm from the dielectric barrier discharge plasma jet exit. The species are sampled from the supersonic expanding helium beam passing into the MBMS through a 40 $\mu$m (metal) or a 50 $\mu$m (ceramic) diameter orifice. N2+, O2+, NO+, O3+ and water cluster ions (H2O)nH^+ (n=1...4) are abundantly produced in the discharge. The analysis of the time-resolved IEDFs reveals that all ions are predominantly sampled at a reference energy E when using the metallic orifice. This energy E is determined by the seeding of the ions into the supersonic expanding helium beam into the MBMS. After the impact of the streamer, an afterglow of 10 $\mu$s is observed when ions are continuously sampled at an energy higher than E by a few 0.1 eVs. This is resolved by postulating a positive space-charge region in front of a positively charged surface. The temporal sequence of the ion impact is consistent with reaction schemes in air plasmas, where O_2+ and N2+ are created before the formation of NO and O3, as well as larger water cluster ions.

FieldValue
Authors
Release Date
2025-09-17
Identifier
e5b33990-6824-4d37-baf2-0c6dff8031a1
Permanent Identifier (DOI)
Permanent Identifier (URI)
Plasma Source Name
Plasma Source Application
Plasma Source Specification
License
Plasma Medium Name
Plasma Medium Properties
1slm of He, Unless stated Otherwise, 10kV_p2p at 20kHz and a 5% Duty Cycle. Generator: Redline G2000 RUB Version
Plasma Medium Procedure
30 min of plasma operation prior to measurement
Contact Name
Henze, Daniel
Contact Email
Public Access Level
Public
Plasma Diagnostic Name
Funding Agency
Project
Subproject
Daniel Henze